Access the Code of Practice online

This registration will be required once-only per browser/device, which is achieved using a cookie stored on your device.

There is no password required, and your information will not be shared with any third parties.

Please register and accept the terms for the NZMRM online COP
By ticking this box you confirm that you have read and accept the Terms listed below


Disclaimer

Although the information contained in this Code has been obtained from sources believed to be reliable, New Zealand Metal Roofing Manufacturers Inc. makes no warranties or representations of any kind (express or implied) regarding the accuracy, adequacy, currency or completeness of the information, or that it is suitable for the intended use.

Compliance with this Code does not guarantee immunity from breach of any statutory requirements, the New Zealand Building Code or relevant Standards. The final responsibility for the correct design and specification rests with the designer and for its satisfactory execution with the contractor.

While most data have been compiled from case histories, trade experience and testing, small changes in the environment can produce marked differences in performance. The decision to use a particular material, and in what manner, is made at your own risk. The use of a particular material and method may, therefore, need to be modified to its intended end use and environment.

New Zealand Metal Roofing Manufacturers Inc., its directors, officers or employees shall not be responsible for any direct, indirect or special loss or damage arising from, as a consequence of, use of or reliance upon any information contained in this Code.

New Zealand Metal Roofing Manufacturers Inc. expressly disclaims any liability which is based on or arises out of the information or any errors, omissions or misstatements.

If reprinted, reproduced or used in any form, the New Zealand Metal Roofing Manufacturers Inc. (NZMRM) should be acknowledged as the source of information.

You should always refer to the current online Code of Practicefor the most recent updates on information contained in this Code.

Scope

This Code of Practice provides requirements, information and guidelines, to the Building Consent Authorities, the Building Certifier, Specifier, Designer, Licensed Building Practitioner, Trade Trainee, Installer and the end user on the design, installation, performance, and transportation of all metal roof and wall cladding used in New Zealand.

The calculations and the details contained in this Code of Practice provide a means of complying with the performance provisions of the NZBC and the requirements of the Health and Safety at Work Act 2015.

The scope of this document includes all buildings covered by NZS 3604, AS/NZS 1170 and those designed and built under specific engineering design.

It has been written and compiled from proven performance and cites a standard of acceptable practice agreed between manufacturers and roofing contractors.

The drawings and requirements contained in this Code illustrate acceptable trade practice, but recommended or better trade practice is also quoted as being a preferred alternative.

Because the environment and wind categories vary throughout New Zealand, acceptable trade practice must be altered accordingly; in severe environments and high wind design load categories, the requirements of the NZBC will only be met by using specific detailing as described in this Code.

The purpose of this Code of Practice is to present both Acceptable Trade Practice and Recommended Trade Practice, in a user-friendly format to ensure that the roof and wall cladding, flashings, drainage accessories, and fastenings will:

  • comply with the requirements of B1, B2, E1 E2 and E3 of the NZBC;
  • comply with the design loading requirements of AS/NZS 1170 and NZS 3604 and with AS/NZS 1562;
  • have and optimised lifespan; and
  • be weathertight.

COP v24.09:Roof-Drainage; Gutters

5.4 Gutters 

The term “gutters” can be applied to all roof drains, but “spouting” refers specifically to external gutters.

Types of gutter:

  • External gutters – positioned outside the building envelope.
  • Concealed Fascia-Gutter Systems – gutters installed directly behind a fascia.
  • Internal Gutters – formed inside a parapet wall or where two connected gables meet at an internal draining point.
  • Valleys – where two roof planes meet at an angle of less than 180°.
  • Roof Gutters – where a penetration obstructs and concentrates the flow of water, often into a single pan.
  • Secret Gutters – where a roof discharges into a raked barge.

The definition of gutters in the COP includes the troughs of a profile adjacent to an obstruction (such as a penetration) or where a secret gutter is required, i.e., at the barge line of a swiss gable roof.

5.4.1 External Gutters (Spouting) 

NZBC clause B2/AS1 requires spouting to have a durability of 5 years. In practice, this is rarely commercially acceptable. However, with sound design and reasonable maintenance, a spouting life of 10 years or more is usually achieved when using the same material as the profiled metal roof.

Spouting that is difficult to access for replacement should be specified in more durable, compatible materials.

5.4.1.1 Bay Windows 

E1/AS1 does not prescribe a need for a building to have spouting, it merely requires that concentrations of water gathered by structures does not enter the building or cause damage or nuisance to other property. This is traditionally achieved by using gutters and downpipes to discharge roof catchments into stormwater drains.

Minor wall projections such as bay windows and boxed penetrations are treated as part of the wall catchment and are typically excused from requiring spouting and downpipe, provided the plan view surface area of individual projections does not exceed 5 m2.

5.4.1.2 Outbuildings 

Small outbuildings such as garden sheds up to 10 are also traditionally exempted from requiring spouting and downpipes providing the discharge does not interfere with neighbouring buildings.

5.4.2 Gutter Capacity Design 

Spouting should be installed with the back lower than the fascia board or cladding to allow for draining of overflow water through the gap between the gutter back and the fascia.

A 2 mm gap between the back of the gutter and the fascia will give a discharge area equal to the diameter of a 75 mm downpipe for every 2.2 m of gutter run.

This gap is only totally effective if the spouting is correctly maintained and the gap is free of debris.  A designed outlet is preferred, either a gutter bracket creating a minimum 6 mm space stop end, a weir, a raised outlet above the spouting sole, a slotted front, or a low fronted gutter.

A weir stop-end, or an outlet with a top edge above the sole of the gutter, can be used to increase outlet capacity.

5.4.2.1 Gutter Fall 

All gutters must have a minimum fall of 1:500 (2 mm in 1 m), the COP recommends 1:200 (5 mm in 1 m), as it will improve drainage and self-cleaning. 

 

5.4.2.2 Maximum Gutter Length 

All gutters are subject to expansion. Maximum gutter-length is determined by the type of metal and its colour. Where gutters have an allowance for expansion (such as an external gutter on a typical gutter bracket or an internal gutter with sliding clips), lengths should be restricted to 25 m in steel and 12 m for copper or aluminium.

An expansion joint can be either a sump, rainwater head or a saddle flashing. Gutters that are directly through-fastened to the fascia or eaves purlin will not be free to move and should be restricted to a maximum of 12 m. Through-fastened gutters are not recommended as they are difficult to replace.

5.4.2.3 Spouting Support Systems 

The spouting bracket system must withstand the potential weight of a gutter full of water. In snow load areas, spouting may be fitted with snow straps and brackets at a maximum of 600 mm centres to withstand the additional potential weight of any snow build-up.

Brackets should be made of compatible material or non-ferrous metal. Brackets for unpainted spouting should be hot dipped galvanised or have an AZ150 or Z450 or equivalent coating. Unpainted Z275 brackets are not acceptable nor are painted or unpainted electro-plated brackets. Brackets for pre-painted spouting must be painted or powder-coated before installation, where they must be colour-matched. In severe marine areas, brackets should be epoxy primed before powder coating or should be formed from non-ferrous metal.

 

 

Brackets for external gutters should be located close to all stop-ends, at both ends of sumps and rain-heads at a maximum of 750 mm spacing for gutters less than 180 mm wide, and at 600 mm for gutters 180 – 300 mm wide. Brackets must be installed to provide a 1:500 (2 mm per metre) minimum gutter gradient towards the outlets.

5.4.3 Internal Corners 

When the back of a gutter is cut down to allow the valley to discharge into it, the gutter capacity is affected. In these cases, gutter calculations should allow for 20 mm less water height, and a min 3 mm spacer should be attached to the back of the gutter (or fascia) at the internal corner to maintain the clearance between the gutter and the fascia.

 

5.4.4 Concealed Fascia Gutters 

Concealed gutter systems are bespoke or proprietary systems that run inside the fascia.

The concealed gutter design must ensure that water cannot enter the soffit or overflow into the building if the gutter system outlet becomes blocked.

Overflows must be provided for concealed gutter systems within 1 m on either side of the downpipe to discharge through the soffit, immediately behind the fascia, and be capable of discharging the total catchment area served by the downpipe.

See 5.6.3 Overflows.

5.4.5 Internal Gutters 

When internal gutters are difficult to replace and their failure could cause major disruption to the building below, they must be made from materials that will last 50 years to comply with the NZBC; metallic coated steel is not recommended for internal gutters that are difficult to replace.

Common internal gutter materials are butyl or other membranes, fibreglass, or non-ferrous metal. Where butyl gutters are used, the metal and flashings should be separated from wet contact with the butyl rubber.

 

Suitable non-ferrous metals include 0.9 mm aluminium, 0.6 mm stainless steel, and 0.6 mm copper. Contact between coated metal products and copper or stainless steel must be avoided because it will lead to early corrosion. Splashback or runoff from copper onto coated metal can have the same effect.

5.4.5.1 Internal Gutter Design Features 

All internal gutters must have upstands that are hooked or returned. Gutters that return under the eaves are not recommended as this design makes removal for replacement more difficult.

To prevent permanent deflection of the gutter, support for the sole of an internal gutter should be provided by either a plywood lining or by close ribbed sheets of roof cladding, separated by a layer of roofing underlay. Internal gutter support must be strong enough to support the weight of water when at capacity, and if over 300 mm wide, be able to support foot traffic.

Internal box gutters must have a minimum depth of 50 mm at their lowest point, including freeboard. A width to height ratio of 2:1 plus freeboard gives maximum flow as it minimises wet surface area for a given cross-sectional area.

A sharp direction change in flow of an internal gutter will affect discharge capacity. Where two buildings meet at an angle, each gutter must be drained separately, or a specific discharge capacity calculation must be applied.

Internal gutters should have an expansion joint at the stop-end.

Outflows from internal gutters may be scuppers or weirs.

A scupper is formed where an internal gutter discharges horizontally through the side or end wall of a gutter through a restricted opening. If a scupper is the same dimension as the gutter, standard calculations for internal gutter sizing may be used. A scupper in the side of a gutter counts as a right-angle bend when using the Gutter Drainage Calculator. When scuppers have a restricted opening, the size of the opening, not the size of the gutter, determines the effective size of the gutter and its maximum catchment capacity. Scupper apertures are vulnerable to blockage and it is recommended that they are fitted with an overflow to alert the building inhabitants of a problem.

5.4.6 Secret Gutters 

A secret gutter is used where the roof edge runs at an angle of less than 90° to a wall, barge, or parapet.

 

 

 

 

Secret gutters should be wide enough to allow for cleaning and must be designed in accordance with 5.4.5.1 Internal Gutter Design Features

5.4.7 Gutter Capacity Calculator 

A responsive online tool for calculating gutter capacity is available at  www.metalroofing.org.nz/cop/capacity-calculations.

Before using this calculator, please read 5.3 Roof Drainage Design.

To calculate gutter capacity, select the type of building, type of gutter, and overflow (yes or no). Complete the rest of the data by changing the val in the designated fields.

For an explanation of each element, please click on the corresponding question mark.

For rainfall intensities, refer to NIWA’s HIRDS tool or the 5.3.2 Rainfall Intensity.

Note that this site address is used only for convenience if printing calculations to attach to documentation.
This address is not factored into calculations - you must determine intensity from Rainfall Intensity Maps or NIWA's HIRDS tool.
The address is not recorded or shared with any other parties.
Select the appropriate Intensity from the Rainfall Intensity Maps, or use the Hirds-tool from NIWA.
 mm/hr
 
Select the appropriate Intensity from the Rainfall Intensity Maps, or use the Hirds-tool from NIWA.
 mm/hr
 
Select relevant options, which will determine the minimum Short-Term Intensity Multiplication Factor
 
 
The minimium Short-Term Intensity Multiplication Factor determined by the application type.
You can increase this manually for critical applications.
 
Enter 1:X or mm per metre- the calculator will automatically convert
Minimum Fall 1:500
 
1: =  mm per metre
  rads
 bends
 
 m
 
 °
 
Secret gutter offset from Main Pitch (plan)
 m
 
 m
 
Illustration is for explanatory purposes only and is not to scale.
Secret gutter offset from main pitch 3 Plan view Elevation view Length of roof Secret Gutter Main roof pitch 9 °
Minimum 1°, Maximum 60°
 
 °
  rads
Secondary pitch only needs to be entered manually if it is different to the main Roof Pitch
 
 °
  rads
 m
 
Select whether runoff will drain on both sides of penetration or just 1;
 
 m
 
 each
 

For rectangular gutters you can supply custom dimensions, or use pre-supplied manufacturer data
 
 
 
You can select Standard Corrugate, input profile dimensions for Trapezoidal, or use pre-supplied manufacturer data
Illustration is for explanatory purposes only and is not to scale.
 
W FB thing D
Illustration is for explanatory purposes only and is not to shape or scale.
 
Cross-Sectional Area=12500 Nett of Freeboard Wetted Perimeter=0.3500 Top width
Illustration is for explanatory purposes only and is not to shape or scale.
 
Cross-Sectional Area=12500 Gross of Freeboard Wetted Perimeter=0.3500 Top width
Describe the product: this does not control the calculation which relies on you entering accurate data
 mm
 
 mm
 
Data provided by a manufacturer, especially for non-rectangular profiles. Must be nett of freeboard May be gross of freeboard with overflow along gutter
 mm²
 
Data provided by a manufacturer, especially for non-rectangular profiles. Must be nett of freeboard May be gross of freeboard with overflow along gutter
 mm
 
Data provided by a manufacturer, especially for non-rectangular profiles. Must be nett of freeboard May be gross of freeboard with overflow along gutter
 mm
 
 °
  rads
 °
  rads
 °
  rads
 
 mm
 
 
 mm
 
Must be less than the upstand, D
 mm
 
 
 °
  rads
= max ( RS , RS2 )
 °
  rads
= min ( RS , RS2 )
Using Martindales Formula:
 °
  rads
= atan ( tan ( A1 ) / tan ( A2 ) )
 °
  rads
= asin ( cos ( A1 ) * cos ( A2 ) ) + pi()/2
 
= cos ( A2 ) * cos ( A1 )
 °
  rads
= asin ( sC7 )
 
= tan ( A2 ) * sin ( aD )
 °
  rads
= atan ( tR1 )
 
= tan ( aD ) * csc ( R1 )
 °
  rads
= atan ( tC6 )
 
= tan ( pi()/2 - aD ) * csc ( R1 )
 °
  rads
= atan ( tC6' )
 °
  rads
= pi()/2 - C6'
 °
  rads
= pi() - C6 - C6' - C5'
 °
  rads
= C6 + C6'
Using WSP Sketch:
 
 
=W * sin ( C5' )
 
=D * cos ( C5' ) - FB
 
=IF ( ( h1max + h3 ) < h1max , h1max + h3, h1max )
 
=W * sin ( C5' )
 
=IF ( ( h1max + h3 ) < h2c,h1max + h3,h2max )
 
=IF ( ( h1max + h3 ) < h2max,0,h1max + h3 - h2max )
 
=0.5 * h1 * tan ( PI()/2 - C5 ) * h1
 
=0.5 * h2 * tan ( Beta - PI()/2 + C5; ) * h2
 
=IF ( ( h3 > 0) , ( W * cos ( C5; ) - 0.5 * h3 * tan ( C5; ) ) * h3 , 0 )
 
=( W * cos ( C5' ) - 0.5 * h4 * tan ( C5' ) ) * h4
 
=A1 + A2 + A3 + A4
 
=h1 / sin ( C5 )
 
=h2 / sin ( C5' )
 
=IF ( ( h3 > 0 ) , h3 / cos ( C5 ) , 0 )
 
=h4 / cos ( C5' )
 
=WP1 + WP2 + WP3 + WP4
 
=h2 * tan ( PI()/2 - C5 ) - IF ( ( h3 > 0 ), h3 * tan ( C5 ) , 0 )
 
=h2 * tan ( Beta - PI()/2 + C5 ) - h4 * tan ( C5')
 
=FWSW13 + FWSW24
 mm
 
 x   mm
 
 mm
 
Select Manufacturer (if applicable) and Profile
 
Describe the product: this does not control the calculation which relies on you entering accurate data
Pitch, or centre-to-centre measurement. Can also be calculated by (Effective Cover Data) ÷ (Number of Pans).
 mm
 
Width of the pan.
 mm
 
Calculated result from (Pitch) - (Crest).
 mm
 
Width of the crest (top of rib).
 mm
 
Total depth of profile.
 mm
 
Depth of profile from the pan to the height of the capillary tube.
 mm
 
Data provided by a manufacturer, especially for irregular profiles.
 mm²
 
Data provided by a manufacturer, especially for irregular profiles.
 mm
 
Data provided by a manufacturer, especially for irregular profiles.
 mm
 
Data provided by a manufacturer, especially for irregular profiles.
 mm
 

 
 
 
 
 
 
 m
 
 m
 
 mm
 
 m
 
 mm
 
 mm
 
 mm
 
 mm
 
 mm
 
 mm
 
 mm
 
 
 
 
 
 
 
 
 
 m/s
 
 m³/s
mm
 
 
 
 
 
 
 
 
 
 
This result is the maximum capacity that can be drained by an element of your selected configuration.
Be sure to consider all relevant elements when assessing a roof area.
 
This result is the maximum length of roof that can be drained by your selected configuration.
Be sure to consider all relevant elements when assessing a roof area.
 m
This result is the maximum area that can be drained above a penetration by your selected configuration.
Be sure to consider all relevant elements when assessing a roof area.
This result is the maximum area that an upper roof area can drain using a spreader of your selected configuration.
Be sure to consider all relevant elements when assessing a roof area.
 

Conditions and assumptions for flat gutters:

  1. Mannings n assumed to be 0.014 to represent long term friction conditions.
  2. Equations valid for gutters with min gradient 1:500.
  3. Bends are accounted for by local loss coefficients (0.5 for each 90° bend).

Conditions and assumptions for downpipes:

  1. Mannings n assumed to be 0.014 to represent long term friction conditions
  2. Any grates must not restrict flow or site-specific design is to be completed - typically double the number of outlets
  3. Gutters must have fall for downpipe sizing to be valid
  4. Calculations consider weir, orifice and friction effects
  5. Orifice discharge coefficient of 0.61 assumed
  6. Weir coefficient of 0.65 and 75% of outlet perimeter assumed available for weir flow
  7. Minimum pipe gradient of 20% assumed for friction conditions

Conditions and assumptions for valleys:

  1. Mannings n assumed to be 0.014 to represent long term friction conditions
  2. Minimum height of Type A valley returns to be 16 mm
  3. Minimum freeboard of 20mm mm for valleys below 8°
  4. Minimum freeboard of 15mm for valleys 8° and steeper

Conditions and assumptions for maximum run:

  1. Mannings n assumed to be 0.014 to represent long term friction conditions
  2. Only valid for supercritical flow (most roofs)

Conditions and assumptions for penetrations:

  1. Mannings n assumed to be 0.014 to represent long term friction conditions
  2. Only valid for supercritical flow (most roofs)
  3. Where Both Sides selected, assumes an even split of flow to either side of penetration

Conditions and assumptions for level spreaders:

  1. Mannings n assumed to be 0.014 to represent long term friction conditions
  2. Only valid for supercritical flow (most roofs)
  3. Corrugate Profiles
    1. No discharge to lap row
    2. One discharge hole per second trough
    3. Assumes flow to top of profile (no freeboard)
  4. Trapezoidal or Trough Profiles
    1. May discharge to lap row
    2. One discharge hole per trough
    3. Assumes flow to capillary groove of profile