COP v3.0:roof-drainage; gutters

5.3 Gutters 

The term “gutters” can be applied to all roof drains, but “spouting” refers specifically to external gutters.

Types of gutter:

  • External gutters – positioned outside the building envelope.
  • Concealed Fascia-Gutter Systems – gutters installed directly behind a fascia.
  • Internal Gutters – formed inside a parapet wall or where two connected gables meet at an internal draining point.
  • Valleys – where two roof planes meet at an angle of less than 180°.
  • Roof Gutters – where a penetration obstructs and concentrates the flow of water, often into a single pan.
  • Secret Gutters – where a roof discharges into a raked barge.

The definition of gutters in the COP includes the troughs of a profile adjacent to an obstruction (such as a penetration) or where a secret gutter is required, i.e., at the barge line of a swiss gable roof.

5.3.1 External Gutters (Spouting) 

NZBC clause B2/AS1 requires spouting to have a durability of 5 years. In practice, this is rarely commercially acceptable. However, with sound design and reasonable maintenance, a spouting life of 10 years or more is usually achieved when using the same material as the profiled metal roof.

Spouting that is difficult to access for replacement should be specified in more durable, compatible materials.

5.3.2 Gutter Capacity Design 

Spouting should be installed with the back lower than the fascia board or cladding to allow for draining of overflow water through the gap between the gutter back and the fascia.

A 2 mm gap between the back of the gutter and the fascia will give a discharge area equal to the diameter of a 75 mm downpipe for every 2.2 m of gutter run.

This gap is only totally effective if the spouting is correctly maintained and the gap is free of debris.  A designed outlet is preferred, either a gutter bracket creating a minimum 6 mm space stop end, a weir, a raised outlet above the spouting sole, a slotted front, or a low fronted gutter.

A weir stop-end, or an outlet with a top edge above the sole of the gutter, can be used to increase outlet capacity.

5.3.2.1 Gutter Fall 

All gutters must have a minimum fall of 1:500 (2 mm in 1 m), the COP recommends 1:200 (5 mm in 1 m), as it will improve drainage and self-cleaning. 

 

5.3.2.2 Maximum Gutter Length 

All gutters are subject to expansion. Maximum gutter-length is determined by the type of metal and its colour. Where gutters have an allowance for expansion (such as an external gutter on a typical gutter bracket or an internal gutter with sliding clips), lengths should be restricted to 25 m in steel and 12 m for copper or aluminium.

An expansion joint can be either a sump, rainwater head or a saddle flashing. Gutters that are directly through-fastened to the fascia or eaves purlin will not be free to move and should be restricted to a maximum of 12 m. Through-fastened gutters are not recommended as they are difficult to replace.

5.3.2.3 Gutter Support Systems 

The spouting bracket system must withstand the potential weight of a gutter full of water. In snow load areas, spouting may be fitted with snow straps and brackets at a maximum of 600 mm centres to withstand the additional potential weight of any snow build-up.

Brackets should be made using compatible material or non-ferrous metal. Brackets for pre-painted external gutters should be painted or powder coated before installation.

Brackets for external gutters should be located close to all stop-ends, at both ends of sumps and rain-heads at a maximum of 750 mm spacing for gutters less than 180 mm wide, and at 600 mm for gutters 180 – 300 mm wide. Brackets must be installed to provide a 1:500 (2 mm per metre) minimum gutter gradient towards the outlets.

5.3.3 Concealed Fascia Gutters 

Concealed gutter systems are bespoke or proprietary systems that run inside the fascia.

The concealed gutter design must ensure that water cannot enter the soffit or overflow into the building if the gutter system outlet becomes blocked.

Overflows must be provided for concealed gutter systems within 1 m on either side of the downpipe to discharge through the soffit, immediately behind the fascia, and be capable of discharging the total catchment area served by the downpipe.

See 5.5.3 Overflows.

5.3.4 Internal Gutters 

When internal gutters are difficult to replace and their failure could cause major disruption to the building below, they must be made from materials that will last 50 years to comply with the NZBC; metallic coated steel is not recommended for internal gutters that are difficult to replace.

Common internal gutter materials are butyl or other membranes, fibreglass, or non-ferrous metal. Where butyl gutters are used, the metal and flashings should be separated from wet contact with the butyl rubber.

 

Suitable non-ferrous metals include 0.9 mm aluminium, 0.6 mm stainless steel, and 0.6 mm copper. Contact between coated metal products and copper or stainless steel must be avoided because it will lead to early corrosion. Splashback or runoff from copper onto coated metal can have the same effect.

5.3.4.1 Internal Gutter Design Features 

All internal gutters must have upstands that are hooked or returned. Gutters that return under the eaves are not recommended as this design makes removal for replacement more difficult.

To prevent permanent deflection of the gutter, support for the sole of an internal gutter should be provided by either a plywood lining or by close ribbed sheets of roof cladding, separated by a layer of roofing underlay. Internal gutter support must be strong enough to support the weight of water when at capacity, and if over 300 mm wide, be able to support foot traffic.

Internal box gutters must have a minimum depth of 50 mm at their lowest point, including freeboard. A width to height ratio of 2:1 plus freeboard gives maximum flow as it minimises wet surface area for a given cross-sectional area.

A sharp direction change in flow of an internal gutter will affect discharge capacity. Where two buildings meet at an angle, each gutter must be drained separately, or a specific discharge capacity calculation must be applied.

Internal gutters should have an expansion joint at the stop-end.

Outflows from internal gutters may be scuppers or weirs.

Scupper outlets should be avoided where possible. They are difficult to weatherproof, and they can inhibit expansion. At the outlet end, a weir overflow should discharge into a sump or rainwater head.

5.3.5 Secret Gutters 

A secret gutter is used where the roof edge runs at an angle of less than 90° to a wall, barge, or parapet.

 

 

 

 

Secret gutters should be wide enough to allow for cleaning and must be designed in accordance with 5.3.4.1 Internal Gutter Design Features

5.3.6 Gutter Capacity Calculator 

A responsive online tool for calculating gutter capacity is available at  www.metalroofing.org.nz/cop/capacity-calculations.

Before using this calculator, please read 5.2 Roof Drainage Design.

To calculate gutter capacity, select the type of building, type of gutter, and overflow (yes or no). Complete the rest of the data by changing the val in the designated fields.

For an explanation of each element, please click on the corresponding question mark.

For rainfall intensities, refer to NIWA’s HIRDS tool or the 5.2.2 Rainfall Intensity.

Note that this site address is used only for convenience if printing calculations to attach to documentation.
This address is not factored into calculations - you must determine intensity from Rainfall Intensity Maps or NIWA's HIRDS tool.
The address is not recorded or shared with any other parties.
Select the appropriate Intensity from the Rainfall Intensity Maps, or use the Hirds-tool from NIWA.
 mm/hr
 
Select relevant options, which will determine the minimum Short-Term Intensity Multiplication Factor
 
 
The minimium Short-Term Intensity Multiplication Factor determined by the application type.
You can increase this manually for critical applications.
 
Enter 1:X or mm per metre- the calculator will automatically convert
Minimum Fall 1:500, Maximum Fall 1:100
 
1: =  mm per metre
  rads
 bends
 
 m
 
 
 °
  rads
 m
 
Select whether runoff will drain on both sides of penetration or just 1;
 
 m
 
 each
 

For rectangular gutters you can supply custom dimensions, or use pre-supplied manufacturer data
 
 
 
You can select Standard Corrugate, input profile dimensions for Trapezoidal, or use pre-supplied manufacturer data
Illustration is for explanatory purposes only and is not to scale.
 
WFBthingD
Illustration is for explanatory purposes only and is not to shape or scale.
 
Cross-Sectional AreaNett of FreeboardWetted Perimeter
 mm
 
 mm
 
Data provided by a manufacturer, especially for non-rectangular profiles. Must be nett of freeboard
 mm²
 
Data provided by a manufacturer, especially for non-rectangular profiles. Must be nett of freeboard
 mm
 
 °
  rads
 °
  rads
 °
  rads
 
 mm
 
 
 mm
 
Must be less than the upstand, D
 mm
 
 
 mm
 
 x   mm
 
 mm
 
Select Manufacturer (if applicable) and Profile
 
Pitch, or centre-to-centre measurement. Can also be calculated by (Effective Cover Data) ÷ (Number of Pans).
 mm
 
Width of the pan.
 mm
 
Calculated result from (Pitch) - (Crest).
 mm
 
Width of the crest (top of rib).
 mm
 
Total depth of profile.
 mm
 
Depth of profile from the pan to the height of the capillary tube.
 mm
 
Data provided by a manufacturer, especially for irregular profiles.
 mm²
 
Data provided by a manufacturer, especially for irregular profiles.
 mm
 
Data provided by a manufacturer, especially for irregular profiles.
 mm
 
Data provided by a manufacturer, especially for irregular profiles.
 mm
 

 
 
 
 
 
 
 m
 
 m
 
 mm
 
 m
 
 mm
 
 mm
 
 mm
 
 mm
 
 mm
 
 mm
 
 mm
 
 
 
 
 
 
 
 
 
 m/s
 
 m³/s
mm
 
 
 
 
 
 
 
 
 
 
This result is the maximum capacity that can be drained by an element of your selected configuration.
Be sure to consider all relevant elements when assessing a roof area.
 
This result is the maximum length of roof that can be drained by your selected configuration.
Be sure to consider all relevant elements when assessing a roof area.
 m
This result is the maximum area that can be drained above a penetration by your selected configuration.
Be sure to consider all relevant elements when assessing a roof area.
This result is the maximum area that an upper roof area can drain using a spreader of your selected configuration.
Be sure to consider all relevant elements when assessing a roof area.
 

Conditions and assumptions for flat gutters:

  1. Mannings n assumed to be 0.014 to represent long term friction conditions.
  2. Equations valid for gutters with min gradient 1:500, max gradient 1:100.
  3. Bends are accounted for by local loss coefficients (0.5 for each 90° bend).

Conditions and assumptions for downpipes:

  1. Mannings n assumed to be 0.014 to represent long term friction conditions
  2. Any grates must not restrict flow or site-specific design is to be completed - typically double the number of outlets
  3. Gutters must have fall for downpipe sizing to be valid
  4. Calculations consider weir, orifice and friction effects
  5. Orifice discharge coefficient of 0.61 assumed
  6. Weir coefficient of 0.65 and 75% of outlet perimeter assumed available for weir flow
  7. Minimum pipe gradient of 20% assumed for friction conditions

Conditions and assumptions for valleys:

  1. Mannings n assumed to be 0.014 to represent long term friction conditions
  2. Minimum height of Type A valley returns to be 16 mm
  3. Minimum freeboard of 20mm mm for valleys below 8°
  4. Minimum freeboard of 15mm for valleys 8° and steeper

Conditions and assumptions for maximum run:

  1. Mannings n assumed to be 0.014 to represent long term friction conditions
  2. Only valid for supercritical flow (most roofs)

Conditions and assumptions for penetrations:

  1. Mannings n assumed to be 0.014 to represent long term friction conditions
  2. Only valid for supercritical flow (most roofs)
  3. Where Both Sides selected, assumes an even split of flow to either side of penetration

Conditions and assumptions for level spreaders:

  1. Mannings n assumed to be 0.014 to represent long term friction conditions
  2. Only valid for supercritical flow (most roofs)
  3. Corrugate Profiles
    1. No discharge to lap row
    2. One discharge hole per second trough
    3. Assumes flow to top of profile (no freeboard)
  4. Trapezoidal or Trough Profiles
    1. May discharge to lap row
    2. One discharge hole per trough
    3. Assumes flow to capillary groove of profile