COP v3.0:durability; sacrificial-and-barrier-protection

4.4 Sacrificial and Barrier Protection 

The zinc and aluminium families of metallic coatings protect the steel base from corrosion in two different ways:

  • Zinc predominant coatings protect the substrate primarily by offering sacrificial protection.
  • Aluminium predominant coatings primarily offer barrier protection.

4.4.1 Sacrificial Protection 

Zinc is more electrically active than steel. By coating steel with zinc, or a zinc-rich product, the zinc becomes the anode for the steel. The steel then becomes the cathode and does not react with the electrolyte. The process is known as cathodic protection.

This protective effect occurs even when there is a small area of steel exposed directly to the electrolyte, such as a cut sheet edge, drill hole or scratch.

While the zinc reacts in preference to the steel, it does so at a slower rate. In normal environmental conditions, the zinc-oxide layer that initially forms on the surface of the zinc combines with carbon dioxide in the atmosphere to form zinc carbonate. That creates a sealed layer with excellent adhesion, and as zinc carbonate has very low solubility, reaction with the electrolyte slows even more.

4.4.2 Barrier Protection 

Barrier protection works primarily by providing a physical barrier between the atmosphere and the steel substrate.

The surface of aluminium-dominant coatings is initially very active, but it quickly forms an inert aluminium-oxide film when exposed to normal atmospheric conditions. Aluminium dominant coatings on steel mainly provide barrier protection as the aluminium, having formed an oxide surface, ceases to offer substantial sacrificial protection.

The exposed edges of barrier protected cladding should not be in contact with corrosive surfaces. See 4.9.4 Compatibility Table